Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Robert T. Stibrany, Harvey J. Schugar and Joseph A. Potenza*

Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087, USA

Correspondence e-mail:
potenza@rutchem.rutgers.edu

Key indicators
Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.046$
$w R$ factor $=0.146$
Data-to-parameter ratio $=12.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

$\kappa^{2} N^{13}, N^{13^{\prime}}$-Hydro-rac-2,2'-bis[2-(1-propyl-benzimidazol-2yl)]biphenyl trifluoromethanesulfonate, the salt of a novel proton sponge

The title salt, $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{4}^{+} \cdot \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$, contains chains of monoprotonated rac-2,2'-bis[2-(1-propylbenzimidazol-2yl)]biphenyl cations separated by trifluoromethanesulfonate anions. The cations are linked by head-to-tail π-interactions of their benzimidazole fragments. Protonation results in a strong hydrogen bond involving the imine N atoms, which gives the cations a tweezer or U shape.

Comment

Proton sponges, defined as species that exhibit high basicity and low nucleophilicity, have been used as auxiliary bases in organic synthesis (Llamas-Saiz et al., 1994). Compound (I) is considered to be the prototypical proton sponge, but others, such as (II), are known (Miyahara et al., 2001). Biphenylbased, basic bidentate ligands, such as (III) and (IV), with three torsional degrees of freedom, have been used to enforce tetrahedral coordination geometries for transition-metal complexes in the +1 and +2 oxidation states (Knapp et al., 1990; Xie et al., 1999; Stibrany, 2001). We have observed that benzimidazole biphenyl-based species of type (IV) can also serve as proton sponges.

(I)

(III)

(II)

(IV)

Received 15 August 2002
Accepted 13 September 2002 Online 27 September 2002

(V)

The structure of the title salt, (V), contains monoprotonated bis(benzimidazole) cations (Fig. 1) and trifluoromethane-

Figure 1
Molecular structure of the cation in (V), showing 25% probability displacement ellipsoids. For clarity, only one of the disordered atoms H13 is shown.
sulfonate anions arranged in layers perpendicular to c (Fig. 2), offset appropriately to be consistent with the body-centered lattice. Within a given layer, the cations form chains along a, in which individual centrosymmetrically related cations are linked head-to-tail by π-interactions of their benzimidazole fragments.

The cations are in sites $4 e$ with site symmetry $2\left(C_{2}\right)$, with the twofold axes passing through the midpoints of the $\mathrm{C} 21-$ C21' and N13 $\cdots \mathrm{N} 13^{\prime}$ vectors. Consistent with this symmetry, H13 is disordered on two sites about the twofold axis. Both the benzimidazole (bz) and phenyl (ph) rings are planar, and they are canted with respect to each other by $64.60(6)^{\circ}(\mathrm{bz} / \mathrm{ph})$ and $88.60(6)^{\circ}(\mathrm{ph} / \mathrm{ph})$ to give the cation a U or tweezers shape. Metric parameters of the benzimidazole fragments agree well with those reported for neutral structures containing 2-phenylbenzimidazole groups (Bei et al., 2000; Elerman \& Kabak, 1997). In particular, the $\mathrm{C} 12-\mathrm{N}($ imine $)$ distance is shorter than the $\mathrm{C} 12-\mathrm{N}$ (amine) distance and both are shorter than the $\mathrm{N}-\mathrm{C} 11, \mathrm{C} 13$ linkages. In (V) the near equality of $\mathrm{C} 12-\mathrm{N}$ distances found in imidazolium salts (Stibrany et al., 2002a) is less apparent because the pair of benzimidazoles is monoprotonated.

The N13..N13' distance [2.652 (2) \AA] is consistent with hydrogen bonding involving H13. In principle, this atom may be bonded either symmetrically or asymmetrically to the two imine N atoms. Both bonding modes were examined and better agreement with the data was obtained with H13 removed from the twofold axis to yield disordered, asymmetric hydrogen bonds. In prononated (I) $\left[\left(\mathrm{IH}^{+}\right)\right]$with different anions, both symmetric (X-ray diffraction, Woźniak et al., 1990) and asymmetric (neutron diffraction, Wozniak et al., 1996; Fox et al., 2001) bonding has been reported. Recent structural (Pozharskii et al., 2002; Fox et al., 2001) and NMR (Perrin \& Ohta, 2001; Pietrzak et al., 2001) studies of proton

Figure 2
Unit-cell (010) projection, showing cation chains along the a axis and the disordered protons H 13 . Other H atoms have been omitted for clarity.
sponges suggest that asymmetric bonding with a shallow double-minimum potential well is the norm. We conclude that, in the present system, H13 is disordered over two sites about the twofold axis and that placing it on the twofold axis, which would result in an unusually large $\mathrm{N} 13-\mathrm{H} 13$ distance $(1.34 \AA)$, would be an artifact of the refinement.

For H13, the shortest interionic contact is to H 16 of an adjacent cation ($3.82 \AA$), indicating that the hydrogen-bonded proton is encapsulated within the cation and that the center of positive charge is relatively far removed from other species, including the trifluoromethanesulfonate anions. To estimate the base strength of (IVa) and (IVb), competitive NMR experiments were performed. In deuterated acetonitrile, (IVb) deprotonates $\left(\mathrm{IH}^{+}\right)$while (IVa) does not, suggesting that, in this solvent, (IV) and (I) have comparable $\mathrm{p} K_{a}$ values (Stibrany et al., 2002b).

Experimental

The title salt, (V), was obtained by the addition of an equimolar amount of a 2.57 M solution of triflic acid in methanol to an acetonitrile solution of $r a c-2,2^{\prime}$-bis[2-(1-propylbenzimidazol-2yl)]biphenyl. Crystals were obtained by slow vapor diffusion of diethyl ether. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=16.03(b r s, 1 \mathrm{H}), 7.67(d, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.48(m, 12 \mathrm{H}), 7.21(d, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(m, 4 \mathrm{H}), 1.90(m, 4 \mathrm{H})$, $0.97(t, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=150.6140 .3$, 135.1, 133.1, 131.6, 130.4, 130.3, 129.3, 125.4, 125.3, 125.0, 116.5, 112.3, 46.9, 23.2, 11.3. ${ }^{19}$ F NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-78.6$.

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{4}{ }^{+} \cdot \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}^{-}$	$D_{x}=1.323 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=620.69$	Mo $K \alpha$ radiation
Monoclinic, $I 2 / a$	Cell parameters from 903
$a=14.383(3) \AA$	reflections
$b=14.217(3) \AA$	$\theta=4.0-23.6^{\circ}$
$c=15.252(5) \AA$	$\mu=0.16 \mathrm{~mm}^{-1}$
$\beta=92.85(1)^{\circ}$	$T=298(1) \mathrm{K}$
$V=3115.1(14) \AA^{3}$	Plate, colorless
$Z=4$	$0.50 \times 0.25 \times 0.18 \mathrm{~mm}$

[^0]
Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
$T_{\text {min }}=0.953, T_{\text {max }}=0.971$
6104 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.146$
$S=1.00$
2479 reflections
200 parameters
H -atom parameters constrained

2479 independent reflections
1925 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-16 \rightarrow 16$
$k=-16 \rightarrow 15$
$l=-17 \rightarrow 14$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.091 P)^{2}\right.$
$+0.8886 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.31 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA,^{\circ}$).

N13-C12	$1.320(2)$	N11-C11	$1.392(3)$
N13-C13	$1.387(2)$	C11-C13	$1.387(3)$
N11-C12	$1.351(2)$		
C12-N13-C13	$107.47(16)$	N13-C12-N11	$111.23(16)$
C12-N11-C11	$107.06(16)$	N13-C13-C11	$107.70(17)$
C13-C11-N11	$106.54(16)$		

The structure was originally refined in space group $C 2 / c$ with $\beta=$ $131.81(1)^{\circ}$; the space group was converted to $I 2 / a$ with $\beta=92.85(1)^{\circ}$ to reduce correlation among x - and z-related parameters. The trifluoromethanesulfonate anions adopt the staggered-ethane conformation and are disordered centrosymmetrically about the $4 c$ sites, such that the CF^{3-} and SO^{3-} fragments, which have approximately the same size and shape, overlap to a large extent. Attempts to refine the atoms of these fragments individually resulted in large correlation coefficients (some greater than 0.95) and unrealistic parameters. Consequently, the anion was refined as a centrosymmetric pair of four-atom fragments ($50 \% \mathrm{C}$ and S in one position, $50 \% \mathrm{O}$ and F in the remaining three positions); this refinement gave acceptable correlation coefficients and better agreement with the data than unconstrained or restrained refinements. Refinement in space group $I a$ was attempted, but did not remove the hydrogen or anion disor-
ders. However, as expected, parameter s.u. values were substantially larger in $I a$ than in $I 2 / a$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

References

Bei, F., Jian, F., Yang, X., Lu, L., Wang, X., Raj, S. S. S. \& Fun, H.-K. (2000). Acta Cryst. C56, 718-719.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2000). SHELXTL (Version6.10), SAINT-Plus (Version 6.02) and SMART-WNT2000 (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Elerman, Y. \& Kabak, M. (1997). Acta Cryst. C53, 372-374.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fox, M. A., Goeta, A. E., Howard, J. A. K., Hughes, A. K., Johnson, A. L., Keen, D. A., Wade, K. \& Wilson, C. C. (2001). Inorg. Chem. 40, 173-175.
Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. \& Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452-3464.

Llamas-Saiz, A. L., Foces-Foces, C. \& Elguero, J. (1994). J. Mol. Struct. 328, 297-323.
Miyahara, Y., Goto, K. \& Inazu, T. (2001). Tetrahedron Lett. 42, 3097-3099.
Perrin, C. L. \& Ohta, B. K. (2001). J. Am. Chem. Soc. 123, 6520-6526.
Pietrzak, M., Wehling, J., Limbach, H.-H., Golubev, N. S., López, C., Claramunt, R. M. \& Elguero, J. (2001). J. Am. Chem. Soc. 123, 4338-4339.
Pozharskii, A. F., Ozeryanskii, V. A. \& Starikova, Z. A. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 318-322.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stibrany, R. T. (2001). US Patent 6,180,788.
Stibrany, R. T., Schugar, H. J. \& Potenza, J. A. (2002a). Acta Cryst. E58, o848o850.
Stibrany, R. T., Schugar, H. J. \& Potenza, J. A. (2002b). To be published.
Woźniak, K., Krygowski, T. M., Kariuki, B., Jones, W. \& Grech, E. (1990). J. Mol. Struct. 240, 111-118.
Wozniak, K., Wilson, C. C., Knight, K. S., Jones, W. \& Grech, E. (1996). Acta Cryst. B52, 691-696.
Xie, B., Elder, T., Wilson, L. J. \& Stanbury, D. M. (1999). Inorg. Chem. 38, 1219.

[^0]: $D_{x}=1.323 \mathrm{Mg} \mathrm{m}^{-3}$
 Mo $K \alpha$ radiation
 Cell parameters from 903
 reflections
 $\theta=4.0-23.6^{\circ}$
 $T=298$ (1) K
 Plate, colorless
 $0.50 \times 0.25 \times 0.18 \mathrm{~mm}$

